
adsbPIC-decoder - software interface

The Software-Interface of the
adsbPIC-Decoder V2

Author: sprut (www.sprut.de)
Last change: 5.12.2011

- 1 -
 -

adsbPIC-decoder - software interface

1 Table of contents

1 TABLE OF CONTENTS .. 2

2 TERMS OF USE: ... 3

3 INTRODUCTION ... 3

4 THE USB-INTERFACE ... 3

4.1 USB-INTERFACE OF THE FIRMWARE .. 3
4.2 USB-INTERFACE OF THE BOOTLOADER .. 4

5 BOOTLOADER AND FIRMWARE .. 4

6 BOOTLOADER ... 5

6.1 BASICS .. 5
6.2 COMMANDS FOR THE BOOTLOADER ... 6

6.2.1 READ_VERSION .. 6
6.2.2 READ_FLASH ... 6
6.2.3 WRITE_FLASH ... 7
6.2.4 ERASE_FLASH .. 8
6.2.5 RESET .. 8

6.3 EXAMPLE FOR THE USE OF THE BOOTLOADER .. 9
6.4 EXAMPLE CODE FOR LINUX .. 10

7 FIRMWARE ... 11

7.1 FORMAT OF THE COMMAND STRINGS .. 11
7.2 GENERAL COMMANDS ... 12

7.2.1 READ_VERSION .. 12
7.3 COMMANDS FOR THE COMPARATOR .. 12

7.3.1 SET_OFFSET ... 12
7.3.2 READ_OFFSET .. 13
7.3.3 SYS_ADC ... 14
7.3.4 RD_ADC ... 14
7.3.5 SYS_PWM2 (for test only) .. 14

7.4 COMMANDS FOR THE CONTROL-PIC ... 15
7.4.1 SYS_EEPROM ... 15
7.4.2 RESET .. 15

7.5 COMMANDS FOR THE ADSB-DECODER ... 15
7.5.1 SET_MODE: ... 15

7.6 RS232-INTERFACE .. 16

8 EEPROM OF THE CONTROL-PIC ... 18

- 2 -
 -

adsbPIC-decoder - software interface

2 TERMS OF USE:
THIS SOFTWARE CAN BE USED WITHOUT PAYING ANY LICENCE FEE FOR
PRIVATE AND COMMERCIAL USE. THIS IS BETA-SOFTWARE. IF THE
SOFTWARE HAS LEFT BETA TEST, IT WILL BE PUBLISHED UNDER GPL-
LICENCE.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

3 Introduction
This handbook is a very early draft probably full of typing errors and other mistakes.
Normally I would not publish it in this bad condition, but I like to give the user
something into the hands for the first step with my decoder and PC-software.
The handbook will be updated and “debugged” continuously to improve its quality.

This handbook describes the software interface of the adsbPIC-decoder. It is
published to help other programmers to develop software that supports the adsbPIC-
decoder.

4 The USB-Interface
The adsbPIC is a bus powered USB-2.0 device.

The decoder-firmware is using a serial-port-emulation and needs no additional
drivers on most computer systems.
The decoder-bootloader needs microchip-MCD-driver (Windows) or libusb-driver
(Linux).

4.1 USB-interface of the firmware

Interface USB2.0 full speed
Power supply bus powered
Power consumption < 100 mA
VID 0x04D8
PID 0xFF0B

- 3 -
 -

adsbPIC-decoder - software interface

4.2 USB-interface of the bootloader

Interface USB2.0 full speed
Power supply bus powered
Power consumption < 100 mA
VID 0x04D8
PID 0xFF0B

Number of USB-configurations 1
Number of interfaces 1
Number of endpoints 2

Endpoint1:
Datadirection OUT
Mode BULK
bufersize 64 Byte

Endpoint2:
Datadirection IN
Mode BULK
bufersize 64 Byte

USB-Timeouts:
Write to device 100 ms
Read from device 1000 ms

5 Bootloader and Firmware
The boot-block of the PICs program memory (Addresses 0x0000 ... 0x07FF) contains
the bootloader. The remaining flash memory can be used by the firmware

As bootloader for the adsbPIC the bootloader-adsb (a modified bootloader-0) is
used. Bootloader and firmware are two independent programs. Both use the USB-
interface in different ways. For the operating system of the PC both seem to be
different USB-devices. However, only one of both can be active at a time.

The bootloader starts after reset or power-on in each of the both following cases:
1. Pin 1 of the control-PIC is connected to low-level (jumper is set)
2. The content of EEPROM-cell with address 0xFE is equal to 0xFF.

In all other cases the firmware starts.

The software adsbScope can activate the bootloader. To upload new firmware the
software USBoot can be used.

- 4 -
 -

adsbPIC-decoder - software interface

6 Bootloader

6.1 Basics

From time to time a new version of the firmware will be published to fix errors and to
integrate new features. The bootloader is a simple to use tool to load the new
firmware into the PIC via the USB-interface.

The bootloader is a small piece of software, which has to be programmed into a
special area of the control PIC of the adsbPIC. To program it into the control PIC a
PIC programmer is needed. This can be a Brenner5 (with Windows-Software P18) or
a Brenner8 (Firmware 0.5 or later; software US-Burn V1.2 or later) or any other
modern PIC-programmer.

The bootloader is available in a separate hex-file. It is contained in the adsbPIC-
decoder-ZIP-file. This bootloader is based on the Microchip-Bootloader for the
„PICDEM USB FS DEMOBOARD“.

The communication uses both endpoints and will be initiated from the PC. It will
always work in these 4 steps:

1. the PC writes data into the out-Endpoint.
2. the Bootloader works off the command.
3. the Bootloader writes data into the in-Endpoint
4. the PC reads the data from the in-Endpoint

The following table shows the structure of data blocks that are exchanged between
PC and bootloader. The size of a data block is limited to 64 bytes.

The real length of the datablock depends on the command. If a command don’t
needs any additional data at all, then even a length of only 1 byte is possible.

If the PC sends a data block that is to long for these command then the unnecessary
bytes at the end of the datablock will be ignored. If at the end of a (to short) datablock
some bytes are missing, then the bootloader will use data bytes that are randomly
contained in the USB-buffer memory.

General data structure:
Address Meaning

Command 0x00 What to do
Length of data 0x01 Number of data bytes
Address low 0x02 Bits 0..7 of address
Address high 0x03 Bits 8..15 of address

Address upper 0x04 Bits 16..23 of address
data byte 1 0x05
data byte 1 0x06

... ...
data byte n 0xFF

- 5 -
 -

adsbPIC-decoder - software interface

The following commands are supported by the bootloader.

Name of the command Code in Datablock
READ_VERSION 0x00
READ_FLASH 0x01
WRITE_FLASH 0x02
ERASE_FLASH 0x03
READ_EEDATA 0x04
WRITE_EEDATA 0x05
READ_CONFIG 0x06
WRITE_CONFIG 0x07
RESET 0xFF

Any other command will be ignored by the bootloader.

6.2 Commands for the Bootloader

6.2.1 READ_VERSION

I use this command to identify the bootloader and to read out its bootloader-version.
One can read out two bytes of information from the device.
Byte 3 has to have the device-identifier-value 0x01, or the device is no bootloader.
Byte 2 contains the bootloader-version.

PC -> Bootloader
Address Meaning Content
0x00 Command 0x00

The response contains the device-identifier: 0x01.

Bootloader -> PC
Address Meaning Content
0x00 Command 0x00
0x01 Not used -
0x02 Version -
0x03 Device 0x01

6.2.2 READ_FLASH

With this command the content of the program memory can be read out. Up to 59
consecutive bytes can be read in one step. The address points to the first byte to be
read.

PC -> Bootloader
Address Meaning Content
0x00 Command 0x01
0x01 Data length 1 .. 59
0x02 Address low
0x03 Address high

- 6 -
 -

adsbPIC-decoder - software interface

0x04 Address upper

The bootloader sends back the whole command-datablock with the memory-data
appended to the end.

PC -> Bootloader
Address Meaning Content
0x00 Command 0x01
0x01 Data length 1 .. 59
0x02 Address low
0x03 Address high
0x04 Address upper
0x05 Data byte 1
...
0xXX Data byte n

6.2.3 WRITE_FLASH

With this command new program code can be written into the program memory of
the control PIC. But before data is written into a memory area, it has to be erased by
the ERASE_FLASH command. (If not, then the memory will finally contain the old
code OR-combined with the new code.)

Exactly 16 consecutive bytes will be written in one step! The address points on the
first address inside the program counter that will be used. The lowest 4 bits of the
address have to be ‘0000’, thus the write process starts at the begin of a 16-byte-
block of memory.
If the data length is different from 16, then the bootloader will do nothing!

PC -> Bootloader
Address Meaning Content
0x00 Command 0x02
0x01 Data length 0x10
0x02 Address low 0xX0
0x03 Address high
0x04 Address upper
0x05 Data byte 1
...
0x14 Data byte 16

The response contains the command only.

PC -> Bootloader
Address Meaning Content
0x00 Command 0x02

- 7 -
 -

adsbPIC-decoder - software interface

6.2.4 ERASE_FLASH

With this command program memory can be erased. The memory will be erased in
blocks of 64 bytes. Several consecutive blocks can be erased in one step.
The address (byte 2...4) identifies the first block to be erased (the lower 6 bits are
ignored / set to 000000).

PC -> Bootloader
Address Meaning Content
0x00 Command 0x03
0x01 Number of blocks
0x02 Address low
0x03 Address high
0x04 Address upper

The response contains the command only.

PC -> Bootloader
Address Meaning Content
0x00 Command 0x03

6.2.5 RESET

After the decoder received this command, it will disconnect from the USB-bus and
execute a reset.

PC -> Bootloader
Address Meaning Content
0x00 Command 0xFF

In this case the bootloader sends NO response back to the PC.

- 8 -
 -

adsbPIC-decoder - software interface

6.3 Example for the use of the Bootloader

The following Delphi-code shows how to use the bootloader. It is using a procedure
Sende_Empfange(NrS, NrE). This procedure sends NrS bytes of the array
send_buf to the USB-device and receives then NrE bytes from the USB-device and
writes this data into the array receive_buf.
Both arrays are 64 bytes long.

The bootloader will be identified with READ_VERSION.
Then the program memory area from 0x800 up to 0x7FFF will be erased and
programmed with new code from the array Hexin.Flash.

Finally the new programmed program memory will be read again and compared with
Hexin.Flash to identify errors.

If no error was detected, then the EEPROM memory cell 0xFE will be erased and the
decoder reseted.

 // is there a bootloader ?
 send_buf[0]:=READ_VERSION; //0
 Sende_Empfange(1, 4);
 if (receive_buf[0] <> READ_VERSION) or (receive_buf[3]<>1) then exit;

 //program memory
 Adresse := $800;
 Endadresse :=$7FFF;
 while Adresse<Endadresse do begin
 //erase 64 byte
 send_buf[0]:= ERASE_FLASH;
 send_buf[1]:= 1; // 1 x 64 byte
 send_buf[2]:= Adresse and $0000FF; // low
 send_buf[3]:= (Adresse and $00FF00) shr 8; // high
 send_buf[4]:= (Adresse and $FF0000) shr 16; // upper
 Sende_Empfange(5,1);
 //write 4 x 16 byte
 for k:=0 to 3 do begin
 send_buf[0]:= WRITE_FLASH;
 send_buf[1]:= 16; // length 16 Byte
 send_buf[2]:= Adresse and $0000FF; // low
 send_buf[3]:= (Adresse and $00FF00) shr 8; // high
 send_buf[4]:= (Adresse and $FF0000) shr 16; // upper
 for L:=0 to 15 do send_buf[5+L]:=Hexin.Flash[Adresse+L] and $FF;
 Sende_Empfange(21,1);
 Adresse:=Adresse+16
 end;
 end;

 //check
 Fehler:=0;

- 9 -
 -

adsbPIC-decoder - software interface

 Adresse := $800;
 Endadresse :=$7FFF;
 while Adresse<Endadresse do begin
 send_buf[0]:= READ_FLASH;
 send_buf[1]:= 16; // length
 send_buf[2]:= Adresse and $0000FF; // low
 send_buf[3]:= (Adresse and $00FF00) shr 8; // high
 send_buf[4]:= (Adresse and $FF0000) shr 16; // upper
 Sende_Empfange(5,send_buf[1]+5);

 for k:=0 to receive_buf[1]-1 do begin
 if (receive_buf[k+5] and $FF) <> (Hexin.Flash[Adresse+k] and $FF)
 then begin
 inc(Fehler);
 end;
 end;
 Adresse:=Adresse+16
 end;

 if Fehler=0 then begin
 // write 0 into EEPROM-cells 0xFE and 0xFF
 send_buf[0]:= WRITE_EEDATA;
 send_buf[1]:= 2; // length 1 Byte
 send_buf[2]:= $FE; // low
 send_buf[3]:= 0; // high
 send_buf[4]:= 0; // upper
 send_buf[5]:= 0;
 send_buf[6]:= 0;
 Sende_Empfange(7,1);

 // reset device
 send_buf[0]:= RESET;
 Sende_Empfange(1,0);

 end else Memo.lines.add('Flash-Error');

6.4 Example Code for Linux

The bootloader for the adsbPIC-decoder is (nearly) identical to the bootloader of the
Brenner8-PIC-programmer. To understand bootloader-operation it may be helpful to
study the usburn-software. Download this archive:
http://www.sprut.de/electronic/soft/usburn/linux/usburn_0_4.tar

It contains the C-project of the usburn-Linux-software. The bootloader-related code is
contained in the file firmware.c. The main-file is usburn.c, The USB-related code is at
the begin of the file in programmer_usb.c.

The code requires the installation of the libusb-package.

- 10 -
 -

adsbPIC-decoder - software interface

7 Firmware
The firmware of the adsbPIC received commands from the PC via USB, works off the
commands and sends a response back to the PC
The firmware resides inside the control PIC of the decoder from address 0x800.

The communication uses both endpoints and will be initiated from the PC. It will
always work in these 4 steps:

1. the PC writes an ASCII-string into the adsbPIC.
2. the firmware works off the command.
3. the firmware writes an ASCII-string into the USB-in-Endpoint
4. the PC reads the ASCII-string from the adsbPIC

The only command without a response-string from the decoder is the RESET-
command.

Each command-string contains at least one bye of data. The first data-byte of a
command string is the command. The following table contains all commands for the
adsbPIC-firmware:

Command Code Meaning
READ_VERSION 0x00 Read device identifier and firmware version

SET_MODE 0x43 Control adsb-dataflow
SET_OFFSET 0x39 Set comparator-voltage offset, control AGC
READ_OFFSET 0x38 Read comparator voltage offset
SET_NEARDC 0x3A Set comparator level for near target detection

SYS_PWM2 0x58 Set PWM (for test only)
SYS_ADC 0x51 Selects input for the ADC
RD_ADC 0x37 Measure voltage with ADC

SYS_EEPROM 0x5A Read/write the EEPROM

RESET 0xFF Reset the adsbPIC-decoder

7.1 Format of the command strings

PC and firmware communicate by ASCII-strings. This slows down the communication
speed (compared to the speed of raw-data) but simplifies the use of the decoder. All
other adsb-decoders use strings too, thus my decoder has to be compatible anyway.

Every command-string starts with the prefix ‘#’.
Then follow all data bytes. The bytes are converted into 2-digit hexadecimal strings.
The bytes are interspaced by’-‘.
The end of the string is a byte with the value 0x0D (CR).

To send the bytes 1, 5, 10, 255 to the decoder, it is formatted into this string:

- 11 -
 -

adsbPIC-decoder - software interface

‘#01-05-0A-FF’ followed by 0x0D

The responses from the decoder are strings too. The prefix is ‘#’ and at the end of
each string are the 3 bytes 0x0A, 0x0D, 0x00.
The response string contains always 16 data-bytes.

7.2 General Commands

7.2.1 READ_VERSION

I use this command to identify the adsbPIC and to read out its firmware version. One
can read out two bytes of information from the device.
Byte 3 has to have the value 4, or the device is no adsbPIC. Byte 2 contains the
firmware version.

PC -> adsbPIC
Address Meaning Content
0x00 Command 0x00
‘#00’

adsbPIC -> PC
Address Meaning Content
0x00 Command 0x00
0x01 Not used -
0x02 Firmware

version
 ?

0x03 Identifier 0x04
‘#00-00-06-04’

7.3 Commands for the Comparator

The comparator of the decoder converts analog video (from the receiver) into digital
video (pulses). It needs a reference voltage. This voltage is generated inside the
decoder, and it should be about 100 mV above the mean analog signal level.

The firmware has an automatic gain control (AGC). It measures the mean analog
signal level every 1.3 seconds and adjusts the reference voltage level. Thus the
offset is kept constant.

The user can monitor the voltage levels, read out and change the offset value.

At reset/power-on the decoder reads the last used offset from the internal EEPROM
and activates the AGC.

7.3.1 SET_OFFSET

This command sets the offset voltage between mean analog signal level and
reference voltage level. The default is 100mV, but some decoders may work better
with other offsets. The offset is an 8 Bit value and is the value in Millivolt. The new
value is stored inside the decoder permanently.

- 12 -
 -

adsbPIC-decoder - software interface

With bit 0 of byte 2 of the command the AGC can be switched on (1) or off (0). For
normal operation the AGC has to be switched on.
The other bits are reserved for near target detection.

PC -> adsbPIC
Address Meaning Content
0x00 Command 0x39
0x01 Not used -
0x02 AGC mode 0-off

1-on
0x03 AGC offset 10..250
‘#39-00-01-64’

The response from the decoder contains no useful information.

adsbPIC -> PC
Address Meaning Content
0x00 Command 0x39
… … …
‘#39-…’

The decoder stores the AGC-offset-voltage (in Millivolt) in EEPROM at address 0x00.
At EEPROM-address 0x03 the AGC-mode is stored. (But for special reasons the
value 0 in this EEPROM-cell means AGC-on and the value 1 means ADC-off.)

At reset or power-up the decoder reads the both values from the EEPROM and
controls AGC based on the stored values.

7.3.2 READ_OFFSET

With this command the user can read out the momentary used offset voltage value
and AGC-mode.

PC -> adsbPIC
Address Meaning Content
0x00 Command 0x38
‘#38’

The byte 2 of the response contains the AGC-mode (1=on; 0=off) while byte 3
contains the offset voltage in Millivolt.

adsbPIC -> PC
Address Meaning Content
0x00 Command 0x38
0x01 Not used -
0x02 AGC mode 0-off

1-on
0x03 AGC offset 10..250
‘#38-00-01-64’

- 13 -
 -

adsbPIC-decoder - software interface

7.3.3 SYS_ADC

This command selects the ADC input. Possible inputs are the reference voltage level
and the mean analog signal level.

PC -> adsbPIC
Address Meaning Content
0x00 Command 0x51
0x01 ADC-input 0-reference

1-analog sig.
‘#51-01’

The response from the decoder contains no useful information.

7.3.4 RD_ADC

The ADC will measure the voltage level at the selected ADC input (see SYS_ADC)
and repots it to the PC.

PC -> adsbPIC
Address Meaning Content
0x00 Command 0x37
‘#37’

The adsbPIC sends the 10-bit result (raw data). ADRESL contains the lower 8 bits
while ADRESH contains the upper 2 bits of the ADC result.

adsbPIC -> PC
Address Meaning Content
0x00 Command 0x37
0x01 ADRESL lower 8 bit
0x02 ADRESH upper 2 bits
#37-00-00-A3’

The raw 10-bit result has to be converted into a usable value. The resolution of the
ADC is 4.88mV (5V/1024). To convert the raw-ADC-data into a voltage in Millivolt, it
has to be multiplied by 4.88.

It is highly recommended to disable the ADSB-decoding for the time of the voltage
measurement:
‘#43-00’ set mode to 0 (stop decoding)
‘#51-01’ selects ADC input (analog signal)
‘#37’ measure voltage
‘#43-02’ set old mode (e.g. 2)

7.3.5 SYS_PWM2 (for test only)

Not needed

- 14 -
 -

adsbPIC-decoder - software interface

7.4 Commands for the control-PIC

7.4.1 SYS_EEPROM

With this command the user can write information into the decoders EEPROM or
read out information from this EEPROM. A practical application is the activation of
the bootloader.
To activate the bootloader the EEPROM cell 0xFE has to be set to 0xFF and then a
reset command has to be executed.

PC -> adsbPIC
Address Meaning Content
0x00 Command 0x5A
0x01 Mode 0x02
0x02 EE-address 0xFE
0x03 Data byte 0xFF

‘#5A-02-FE-FF’

7.4.2 RESET

After the decoder received this command, it will disconnect from the USB-bus and
execute a reset.
No response will be send back to the PC.

PC -> adsbPIC
Address Meaning Content
0x00 Command 0xFF

The adsbPIC will not send any response to the PC.

7.5 Commands for the ADSB-decoder

7.5.1 SET_MODE:

This command controls the ADSB-decoder. The decoding can be switched on and
off. In addition the CRC-check and the DF17/18/19-filter can be activated.
The use of frame-numbers and timestamps can be activated too.

PC -> adsbPIC
Address Meaning Content
0x00 Command 0x43
0x01 mode ...

‘#43-02’

The lower 4 bits of the databyte 0x01 contain the mode of the decoder. There are 4
basic modes:

Mode CRC filter description

- 15 -
 -

adsbPIC-decoder - software interface

0 No No The decoder will not send any ADSB-data to the PC
2 No No The decoder will send all received ADSB-frames to the PC
3 No Yes The decoder will send only DF17, DF18 and DF19-frames to

the PC
4 Yes Yes The decoder will send only DF17, DF18 and DF19-frames with

correct CRC-checksum to the PC

The decoder will use the RAW-data format (the same that is used by other decoders)
and send the ADSB-frames as test-strings to the PC:
*12345678901234;
*1234567890123456789012345678;

If the bit 4 of the mode-byte is set to 1, then the decoder will add time stamps to all
frames. The time stamp is a 48-bit counter that increments with 12MHz clock. It is
used as prefix to the raw-data at each frame. If the time counter is active, then
instead of the leading’*’ a ‘@’ is used as prefix of the string.
@123456789ABC12345678901234;
@123456789ABC1234567890123456789012345678;

If the bit 5 of the mode-byte is set to 1, then the decoder will send a “heart-beat-
frame” every 1.3 seconds.
The heart-beat is a DF23 frame with subtype=0. It contains the level of the reference
voltage (byte 1 and 2), the signal voltage level (byte 3 and 4), the number of header
errors (byte 5 and 6) and the number of data errors (byte 7 and 8).

If the bit 6 of the mode-byte is set to 1, then the decoder will add 32-bit frame
numbers to all frames. This can be used during test to identify frame losses in the

The command-response from the decoder contains no useful information.

7.6 RS232-Interface

Since firmware 6 the decoder has an additional RS232-interface. Since firmware 7
the speed and polarity of this interface can be changed. No special commands are
necessary to change the RS232-setup. All this can be realized by the manipulation of
two EEPROM cells. The old SYS-EEPROM-command can be used for this.

At reset or power-up the decoder reads the EEPROM cells 0x01 and 0x02. The value
at 0x01 is used to set the RS232-speed while the value at 0x02 controls the polarity
of the RS232-signals.

Values at the EEPROM cell 0x01:
Value=0 115.200 kbit (default)
Value=1 921.600 kbit (known as 1 Mbit)
Value=2 19.2 kbit

Any other value at the cell 0x01 will set the speed to 115.200 kbit.

Values at the EEPROM cell 0x02:
Value=0 polarity for external RS232-driver-chips (default)

- 16 -
 -

adsbPIC-decoder - software interface

Value=1 polarity for use without driver

Any other value at the cell 0x02 will set the polarity for the use with a driver-chip.

To change the speed or polarity of the RS232-interface one has to write the correct
values into the EEPROM-cells and to execute a reset command for the decoder.

- 17 -
 -

adsbPIC-decoder - software interface

8 EEPROM of the control-PIC

Some values are stored inside the EEPROM of the decoder.

The value at address 0xFE controls the bootloader. If its value if equal tot 0xFF, then
the bootloader will be activated after reset or power-on.

from to No of
bytes

Data type Value Default

0x00 0x00 1 byte Offset voltage in mV 100
0x01 0x01 1 byte RS232-speed 0
0x02 0x02 1 byte RS232-polarity 0
0x03 0x03 1 byte Offset-voltage-regulation 0

…
…

0xFE 0xFE 1 Byte Bootloader marker 0

- 18 -
 -

	1 Table of contents
	2 TERMS OF USE:
	3 Introduction
	4 The USB-Interface
	4.1 USB-interface of the firmware
	4.2 USB-interface of the bootloader

	5 Bootloader and Firmware
	6 Bootloader
	6.1 Basics
	6.2 Commands for the Bootloader
	6.2.1 READ_VERSION
	6.2.2 READ_FLASH
	6.2.3 WRITE_FLASH
	6.2.4 ERASE_FLASH
	6.2.5 RESET

	6.3 Example for the use of the Bootloader
	6.4 Example Code for Linux

	7 Firmware
	7.1 Format of the command strings
	7.2 General Commands
	7.2.1 READ_VERSION

	7.3 Commands for the Comparator
	7.3.1 SET_OFFSET
	7.3.2 READ_OFFSET
	7.3.3 SYS_ADC
	7.3.4 RD_ADC
	7.3.5 SYS_PWM2 (for test only)

	7.4 Commands for the control-PIC
	7.4.1 SYS_EEPROM
	7.4.2 RESET

	7.5 Commands for the ADSB-decoder
	7.5.1 SET_MODE:

	7.6 RS232-Interface

	8 EEPROM of the control-PIC

